The preconditioned inverse iteration for hierarchical matrices

نویسندگان

  • Peter Benner
  • Thomas Mach
چکیده

The preconditioned inverse iteration [Ney01a] is an efficient method to compute the smallest eigenpair of a symmetric positive definite matrix M . Here we use this method to find the smallest eigenvalues of a hierarchical matrix [Hac99]. The storage complexity of the datasparse H-matrices is almost linear. We use H-arithmetic to precondition with an approximate inverse of M or an approximate Cholesky decomposition of M . In general H-arithmetic is of linear-polylogarithmic complexity, so the computation of one eigenvalue is cheap. We extend the ideas to the computation of inner eigenvalues by computing an invariant subspaces S of (M − μI) by subspace preconditioned inverse iteration. The eigenvalues of the generalized matrix Rayleigh quotient μM (S) are the wanted inner eigenvalues of M . The idea of using (M − μI) instead of M is known as folded spectrum method [WZ94]. Numerical results substantiate the convergence properties and show that the computation of the eigenvalues is superior to existing algorithms for non-sparse matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization

In this paper we discuss an abstract iteration scheme for the calculation of the smallest eigenvalue of an elliptic operator eigenvalue problem. A short and geometric proof based on the preconditioned inverse iteration (PINVIT) for matrices [Knyazev and Neymeyr, (2009)] is extended to the case of operators. We show that convergence is retained up to any tolerance if one only uses approximate ap...

متن کامل

A STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT

The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...

متن کامل

Improvements of two preconditioned AOR iterative methods for Z-matrices

‎In this paper‎, ‎we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix‎. ‎These methods can be considered as improvements of two previously presented ones in the literature‎. ‎Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners‎.‎

متن کامل

Spectral properties of the preconditioned AHSS iteration method for generalized saddle point problems

In this paper, we study the distribution on the eigenvalues of the preconditioned matrices that arise in solving two-by-two block non-Hermitian positive semidefinite linear systems by use of the accelerated Hermitian and skew-Hermitian splitting iteration methods. According to theoretical analysis, we prove that all eigenvalues of the preconditioned matrices are very clustered with any positive...

متن کامل

A geometric theory for preconditioned inverse iteration applied to a subspace

The aim of this paper is to provide a convergence analysis for a preconditioned subspace iteration, which is designated to determine a modest number of the smallest eigenvalues and its corresponding invariant subspace of eigenvectors of a large, symmetric positive definite matrix. The algorithm is built upon a subspace implementation of preconditioned inverse iteration, i.e., the well-known inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013